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We apply the general formalism of a class of non-Markovian processes which 
we have studied elsewhere to three simple models of chemical reactions: dis- 
sociation, isomerization, and diffusion in a double-well potential. Our method 
leads to explicitly solvable models and numerical computations. The results are 
in agreement with numerical simulation and stochastic dynamics studies of 
other authors. 
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1. I N T R O D U C T I O N  

In this work, we define a general class of non-Markovian collision 
processes (see also Ref. 1) and apply this formalism to study very simple 
models of chemical reactions in the presence of a surrounding medium. The 
dynamics combines a deterministic dynamics, which would be the 
dynamics of the reaction if the reactant molecules were isolated, and a 
stochastic effect due to the presence of the medium. The existence of non- 
exponential waiting times causes these processes to be non-Markovian and 
introduces memory terms in their evolution equation. 

We investigate three models: the first two are models with a finite 
number of regimes and trivial state space and are models of dissociation 
and isomerization. The third model is the diffusion in a two-well potential. 
In a sense, this last model is a substitute to the Langevin equation and an 
amelioration of Kramers'  transition state theory, with the advantage that 
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we can compute explicitly our model without integrating a partial differen- 
tial equation of Fokker-Planck type. 

A consequence of the combination of deterministic and stochastic 
dynamics is an oscillating approach to equilibrium, which is confirmed by 
numerical computations. 

2. N O N - M A R K O V I A N  COLLISION PROCESSES 

2.1. A General Mode l  

We want to describe a system (a test molecule, a group of molecules, 
or some abstract degrees of freedom) evolving under the action of external 
and internal forces. We assume that this evolution go through different 
phases, which we call regimes, labeled by an index s taking values from 0 
to m. In each regime s, the state of the system is represented by a point in a 
state space E~ and this state space may depend on ~, because in each regime 
we may be interested by different degrees of freedom (think, for example, of 
the different steps of a chemical reaction). At time t, the system is described 
by two random variables s(t) and X(t) belonging to E~t~. Its probability 
law is P~(A, t), which is the probability that e(t)= e and X(t) is in the sub- 
set A of E~(,). 

Our fundamenal hypothesis is that the process keeps no memory of 
events prior to the beginning of a regime, specified by its initial time and 
initial state. This is a kind of partial Markov property (this hypothesis was 
also made by Van Kampen in his composite stochastic processes (2) with 
more restrictive conditions). 

Under regime s, the evolution is a Markov process with an 
infinitesimal operator L~(x); we denote by p~(x, t) the densities of its trans- 
ition probabilities, satisfying 

~3t p~(x, t[Xo) = L~(x) p~(x, t l Xo), x ~ E~ 

Suppose now that we are in regime So; call T~ 0 the stochastic duration of 
regime So knowing that the next regime is s. We denote by A~o(t, Xo) the 
conditional probability that Inf~ T~ 0 > t knowing that we have just entered 
regime eo at time 0 and in state Xoe E~ 0, and by F~l~o(dtl Xo)dt the con- 
ditional probability that the first transition after time 0 occurs within the 
time interval (t, t + dt) and yields the regime sl, knowing that we have just 
entered regime s o at time 0 and in the initial state x 0 e E~0. 

Finally, we denote by y~l~o(xl I x f ,  t l ) dx l  the conditional probability 
that e(tl)=Sl, X ( t l ) ~ d x l C E ~ l  , knowing that S(tl--0)=eo, X(I1--0)= 
x~, and a transition So--* Sl occurs at time t~. 
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Our purpose is to find the conditional probability P~o(dx, t l Xo) that 
the system is at time t in regime e, in dx ~ E~, knowing that a transition 
has occurred at time 0, yielding eo and a state Xo e E~ o. 

2.2. The Evolution Equation 

We shall use a matrix notation: P(dx, tEXo) is the matrix 
P~o(dx, t lXo), e, eo = 1 ..... m; O(dx, t] Xo) is the matrix 

O~o( dx , t [ Xo) = 6~oA~o( t ) p~o( dx, t[ Xo) (2.1) 

O(dxl, dr lxo) is the matrix 

(~,~o(dx, d,[xo)= fx y,,~o(dXllXo ) F~l~o(d~lxo) p~(dxo, ~lXo) (2.2) 
O- ~ Ee.o 

The general evolution equation is, using matrix products, 

P(dx, t] Xo) 

=O(dx' t lx~ fx P(dx, t-rlx,lO?(dXl,&lXo) (2.3) 

which can be treated by Laplace transforms. 

Remarks: 

(i) We have assumed time homogeneity. 

(ii) Equation (2.3) is easily derived by separating the "no-collision 
events" and the "at least one collision events" (see Ref. 1). 

2.3. Case of Exponential and Deterministic Waiting Times 

In the Markovian case, it is well known (3~ that the waiting times in 
each regime e are stochastic and exponentially distributed with the constant 
2~, so that 

A~(t) = exp( - 2~ t) (2.4) 

and 

;oF~l~o(&lXo) = = - exp( F~,~o( t l Xo) #ele0[ 1 

where #~0 is the transition probabili ty from % to el. 

(2.5) 
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As a simple modification of this pure Markovian case, we now sup- 
pose that in each regime eo, another physical process can cause a transition 
at a deterministic time ~,0 if the purely Markovian process has not yet 
produced its own transition before r~0. In case this deterministic process 
operates, let v~,~0 be the transition probability for going from regime eo to 
regime e~. Then the transition laws are given as follows: 

(i) If t< r~ ,  

A~(t)=e -;J 
(2.6) 

r~,~(t)=#~,~(1-e ~t) 

(ii) I f t~>r , ,  

A~(t)=0 

F~,,(t) = #~,~(1 -e-;'~:~)+v~,~e - ~  
(2.7) 

We will use the Laplace transforms ,4~(s) and/~,~(s) of A~(t) and F~,~(t): 

A~(s) = s - - ~  (1 --e -(~+ ~):~) 

~ C - (s + 2~)z~) C - (s + 2~)~ 

s(s + 2~) s 

(2.8) 

2.4. Case of Trivial Phase Spaces 

In the first two examples of Sections 3 and 4, there is no phase space 
in each regime; this means that the state of the system is completely deter- 
mined by the regime e. We can apply Eq. (2.3) and obtain the Laplace 
transform P(s) of P(t) in matrix notation: 

with 

P ( s ) = 0 ( s ) A  l ( s ) = O ( s ) [ I - s F ( s ) ]  i 

Oo,~(s) = 6~,~Jl~(s), d~,~(s) = ~ , ~ -  sP~,~(s) 

Then, the asymptotic probability distribution is 

Po~0(~) = / ' ~ (~ )  ~c t~q~ 

where 

t = . ~ ( 0 ) = 2 7 1 ( 1 - - e  ~0) 

(2.9) 

(2.10) 
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and (q~) is the right null vector of A(0). Here 

A(0) = [ I  - sF ( s ) ] , _  o = I -- l u [ I -  exp( - ;L~)] - v exp( - ;L~) 

with obvious matrix notations. 
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3. A MODEL OF DISSOCIATION 

3.1. Description of the Model  

The dissociation of a molecule, for instance I2, and the corresponding 
recombination have often been taken in the literature as an example of a 
simple chemical reaction, which allows a test of stochastic methods used to 
simulate the interaction with the medium. (~8) Here we consider a very 
crude model for a dissociation: 

A B ~ A + B  

Supposing that this reaction may be described by a single reaction 
coordinate x which is 0 for the molecule AB and infinite when the dis- 
sociation is achieved, we can model the internal dissociation potential V(x) 
by the piecewise constant potential shown in Fig. 1: 

V I < 0  if O<.x<a 

V(x)=  I / 2 > 0  if a<~x<b (3.1) 

0 if b<~x 

V(x) 

v2 

vl 

. . . . . . . . .  i 

E=2 
It, 

L I 
( ~ = 3  

Fig. 1. Simple model of potential for dissociation-recombination of a molecule. 
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We say that the system (A, B) is in regime 1 (bound state) if its energy 
E is less than V2 and if 0 ~< x ~< a; in the same manner, we say that it is in 
regime2 if E>>.V2 and O<<.x<<.b (transitory regime) and in regime3 
(dissociated state) if x >/b. 

Now, if the system is trapped in regime 1, it can only change if a 
collision with other molecules of the medium gives if enough energy to go 
to regime 2. We suppose that the waiting time T~ of such a collision is 
independent of the past of the system and exponentially distributed with a 
time constant 21, 

P r o b ( T l > t ) = e  ~' '  (3.2) 

Once the system is in regime 2, it will pass to regime 3 after a deterministic 
time ~2 unless before r2 another external collision brings it back into 
regime 1, which can occur after a stochastic time T2 exponentially dis- 
tributed with a time constant 22. 

Finally, if the system is dissociated (regime 3), it can pass to regime 2 
if a collision of A and B occurs with interference of other molecules of the 
medium so that the velocity and energy conditions are fulfilled; this hap- 
pens after a stochastic time T3 exponentially distributed with time constant 
23. 

Although elementary, this model of dissociation presents some 
interesting features because it allows us to use distinct time constants 2i, 
i = 1, 2, 3 (in particular, 23 should be very different from 21 and 22) , and 
mainly because it is non-Markovian due to the existence of the noninstan- 
taneous transitory regime 2. 

3.2. Applications of the Results of Section 2 

We apply the results of Section 2, with 5= 1, 2, 3, r l = r 3  = + ~ .  We 
write 

p(s)  = e - ~  + ~2)~2 (3.3) 

and we obtain, with the notations of Section 2 and of Ref. 1, the following 
Laplace-transformed matrices: 

(21 + s)-I  0 0 ) 
O(s)= 0 (1-p)(22+s)  1 0 

0 0 (23 +s )  -1 

1 --.)~2( 1 -  p)()~2 -~ S) 1 

A ( S )  = - -  21(21  "~- S) -1  l 

0 - p  

0 ) 
- -  )t3(23 -~- S) - 1  

1 

(3.4) 
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Then 

]1 
det A(s)= (2,+s) S[S2~-(21~-22~- l~3-- )~3f l )S-~3(21Jv~2)  

i= 

-- [23(21 -}- 22) -- 2122]p] (3.5) 

and P(s) can be easily computed by using Eq. (2.9). But P(t) cannot be 
expressed in a simple analytical form. 

3.3. Long-Time Behavior of  P ( t )  

The results of Section 2 give immediately the asymptotic value P~(oo) 
of P~,0(t): 

( ( 1 - o ) 2 1 ' \  
Pe(oc)  ) 0(7 (1 - -  O'))u21 / ( 3 . 6 )  

~231 / 

where 

0" ~ e -  22~:2 

In the case ~2 = GO, the system is equivalent to a Markov chain on the 
two states 1 and 2, and (3.6) yields the classical result 

Pl(oo) oc 2~ l, P2(oo) (7)(7 /~21, P3(oo) = 0 

In order to study the approach to equilibrium, we must determine the 
nonzero values of s for which det A(s) given by (3.5) vanishes; they are the 
roots of 

f(s)=-S2+(2t+22-f-)~3--23p)sq-23(21-t-,)o2)(1 --p) q-/[122p = 0  (3.7) 

These values cannot be explicitly calculated, because p depends on s 
by (3.3). 

On the other hand, an approximate solution such that sz2 ~ 1 is easily 
found since p may be replaced by a = e  ~2~2; the roots of (3.7) in this 
approximation are 

with 

s+ = - � 8 9  "2] (3.8) 

= [-21 + 22 - 23(1 - ~)]2 _ 4~2~ 22 (3.9) 
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It can be seen that the condition s+ T 2 ~ 1 is realized if 21Z" 2 ~ 22272 ,~ 1 
(which implies that 1 - a - 2 2 4  1), and the approximation (3.8) for the 
actual roots applies if the deterministic time for dissociation 272 is very short 
compared to the mean time intervals 211 and 221 between the collisions 
that cause the change of regimes. 

It should be noted that the roots s+ may be complex, when 

21 + 22 
(3.10) 

2 3 - -  1--rr 

(which in turn implies that 2 3 is of order 1/272). Under condition (3.10) we 
have an oscillating approach to equilibrium, which never occurs in a purely 
Markovian case (% = 0  or 272 = oe) and is indeed confirmed by numerical 
computations. 

4. A MODEL OF ISOMERIZATION 

4.1. Description of the Model 
Following Chandler, Berne, and other authors, (81~ we model the 

isomerization of a molecule (for example, of butane) as the motion of a 
particle along a single reaction coordinate x in a double-well potential 
V(x); the two wells of the potential are associated with the two states of the 
isomer (for example, the gauche and trans isomer of butane). The true 
intramolecular potential (more precisely, the effective potential, which 
includes the average interaction with the medium (9)) is approximated by a 
piecewise constant potential, the numerical characteristics of which may be 
deduced from experimenal data. The potential is schematized in Fig. 2. 

~ _ E - -  2 ~,ll 

E- I~  V4--- 
~ ' - - - -  _ _  V 1 

I 
I 

a b 0 

~ - - 3  

•=4 

I 
I 
I 
I 
I 
c d 

Fig. 2. Simple model  of potential  for isomerization. 

II 

x 
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Supposing that the origin of the x coordinate is the middle point of the 
top of the barrier potential, we define the following regimes for the reacting 
molecule: 

regime 1: 

regime 2: 

regime 3: 

regime 4: 

a ~< x ~ b and energy < Vo (trans isomer) 

x < 0 and energy > V0~ 
(transition states) 

x > 0 and energy > Vo 

c ~< x ~< d and energy < Vo (gauche isomer) 

We suppose that random collisions with the solvent molecules may 
induce the transitions 1 ~ 2, 2 ~ 1, 3--* 4, and 4 ~ 3 with the respective 
stochastic times T1, T2, T3, and T4, each Ti being exponentially dis- 
tributed with time constant 2~ -1, independently of the past events. 

On the other hand, the molecules can go from 2 to 3 and 3 to 2 after a 
purely deterministic time r if no collision has occurred before; v results 
from the deterministic motion in V(x) and the internal energy of the 
molecule (which we take to be the mean value at thermodynamic 
equilibrium at temperature T); the deterministic motion in V(x) is an 
undamped oscillation between a and d. 

4.2. Applications of the Results of Section 2 

We summarize the preceding description of this model in the for- 
malism developed in Section 2; the matrices la and v which give the possible 
stochastic and deterministic transitions are 

(,~ (~176176176 i O1 0 0 0 0 l 0 
I t=  v-- 

0 0 0 1 0 0 

0 1 0 0 0 0 

(4.1) 

The matrix A(s) and its determinant are computed in Appendix A. 
Using the results of Section 1, one obtains the asymptotic value P,(oo) 

/, a3(1 - a2 ) , t i  -1 \ 

OC ~ 0-3(1 - -  0-2))~21 ) P , ( ~ ) )  ~ o.2( 1 _ 0 _ 3 ) , , ~ 3 1  (4.2) 

\ 0-2(1 - -  0"3)241 

of P,~o(t) as 

with 

O'iX e 2i~ 

822/45/1-2-22 
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The approach to equilibrium is characterized by 

P ( t ) - P ( ~ )  ~ e st 

where s is the nonzero root of det A ( s ) -  0 that has the smallest absolute 
value. This last equation can be written as 

S(S "~ 21 ~- 22)(S -{- 23 -[- 24) (1 - P2P3) + 21 '~2P2( l --  p3)(S + 23 + 24) 

q- 2324P3(1 --  p2)(s  + 21 + 22) ~-- 0 (4.3) 

where p i =  e - ~ ' + s )  (see Appendix A for details). 
When sr ~ 1, P2 and P3 can be replaced by the constants a2 and o- 3 

with cri = e-~G and the solution s of (4.3) is the solution of a third-degree 
equation. 

It can be shown analytically and numerically that the root So of 
smallest absolute value can be complex, which indicates an oscillating 
approach to equilibrium: the complete rigorous discussion is given in 
Appendix A and is rather delicate in this case of the model of isomerization 
(see Appendix A for the range of values of parameters 2i and r such that 
this occurs). A purely dissipative mechanism would give an exponential 
nonoscillating decrease of the deviation from equilibrium; a deterministic 
dynamics would lead to undamped oscillations; here, as in the example of 
dissociation, we have a mixing of these behaviors. This phenomenon has 
been predicted by a numerical simulation by Chandler et a/. ~9'1~ It is also 
obtained in the simulation by Adelman et a/J 7'8) 

5. A M O D E L  OF D I F F U S I O N  BETWEEN T W O  
POTENTIAL  WELLS 

5.1. General  Descr ipt ion and M o t i v a t i o n  

This model is an improvement of the crude model of isomerization 
previously studied and may also be used for any reaction from stable state 
A to another stable state B described by a reaction coordinate x. The state 
A is observed when the system is trapped in the left well of the 
intramoleclar potential 0 ~< x < a; the state B is observed when the system is 
in the other well L ~< x ~< L + b (see Fig. 3). 

Both states A and B are represented by one regime; their excited forms 
A* and B* are also represented by one regime. The difference between this 
model and the isomerization model of the preceding section is that the 
behavior of the reacting system near the top of the barrier is investigated 
more carefully by introducing a fifth regime in which the "spatial" motion 
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V 

E--2 
~- ~ ~-~1 ~ 

0 - ~  - -  

0 a 
<_E=_I_~ 

V1 

V4 

E----0 E---3 

E=4 

D 

L+b x 

Fig. 3. Simple double-well potential. The diagram given below shows symbolically the 
allowed transitions between the different regimes in our model; a line with an arrow indicates 
an allowed transition in the sense of the arrow: 

(a, +1) . . . .  (x, +1) . . . .  (L, +1) 

1 3 ~4 

0 

is explicitly taken into account in a simplified way. This point is of interest 
since the reactive flux k(t) at short times (see Section 5.6) depends on the 
behavior of the system near the top of the barrier. (9'12) On the other hand, 
the introduction of a spatial state in this intermediary regime makes the 
calculations much more complicated. However, it will be seen that the 
model can be solved explicitly and in particular the reactive flux can be 
investigated completely. 

5.2. Ma themat ica l  Descript ion of  the Model  

We shall adopt the more general language introduced in Section 2 in 
the case of the diffusion of a "particle" between two potential wells of 
respective depths E 2 and E 3 (see Fig. 3). The model has five regimes, 
denoted e = 0, 1, 2, 3, 4, with the following specifications: 

R e g i m e  ~ = 1. The particle is trapped in the potential well [0, a]. 
Its state space in that regime is the trivial space with one point. After an 
exponential waiting time T1 with law P rob (T  1 > t ) = e  -~lt, the particle is 
activated and goes to regime E = 0 at point a with speed + v. 
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Regime ~ = 4 .  The particle is trapped in the potential well 
[L, L + b];  7"4 is the exponential waiting time with constant 24; at T4 the 
particle is activated and goes to regime ~ = 0 at point L with speed - v .  

Regime ~- -0 .  The particle wanders on the top of the barier, its 
deterministic motion being perturbed by random collisions that change the 
sign of its velocity without changing the absolute value v of the velocity. 

The state space is the Cartesian product [a, L]  x { +1, - 1  } giving the 
position x~  [a, L ]  and the sign e = +1 of its velocity v. Denote ~ + ( x ) =  
( L - x ) / v ,  ~ _ ( x ) = ( x - a ) / v :  these are the times to go from x to L with 
speed + v and from x to a with speed - v .  Let T o be an exponential waiting 
time of constant 2o. Suppose that the particle is in state (x, e) either just 
after entering regime 0 or just after a collision has occurred in regime 0. 
Then, if To > v~(x), the particle goes from (x, e) to regime E = 3 if e = 1, or 
e = 2 if e = - 1  in time z~(x); if To < %(x), the particle goes from (x, e) to 
(x', - ~ )  at time To with velocity e v a n d  x ' =  x + c~v, changes the sign of its 
velocity at To, and continues independently according to this rule. 

Regime ~ = 2. The state space is a trivial space with one point. In 
this regime we consider that the particle is above the well [0, a]  with an 
energy higher than the barrier and absolute velocity v2 = (v2+ 2E2/m) 1/2. 
We denote by % = 2a/v 2 the deterministic sojourn time in regime e = 2. If 
the particle comes from e = 0, it enters e = 2, say at time t, and then if 
r2 > T2 (T2 is the exponential time of constant 22), it becomes desactivated 
at time T2 + t and goes to regime e = 1 at that time. On the other hand, if 
% <  T2, it comes back to regime e = 0  at time "c2+t , into state (a, +1). 

Regime ~- -3 .  This regime is similar to ~=2:  the particle is above 
the well I-L, L +  b] with an energy higher than the barrier and absolute 
velocity v3-=(v2-t-2E3/m) 1/2. Let "r3=2b/v3; if the particle comes from 
regime e = 0 at time t, it enters e = 3, and then if r3 < T3, it becomes desac- 
tivated and goes to regime e = 4  at time T3 + t; if ~3 < 7"3, it comes back to 
regime e = 0  at time T 3 --~ t, into state (L, -1 ) .  

For  e, e ' =  1, 2, 3, 4, the state spaces of these regimes are one-point 
spaces and P,,~(t) is the transition probability for going from regime e to 
regime e' in time t knowing that at time 0 the particle has just entered 
regime e. 

For  e = 1, 2, 3, 4, we denote by Po~(x, c~, t) the transition probability 
for going from regime e to regime 0 at point (x, c~)e [a, L ]  x { - 1 ,  +1} in 
time t, knowing that at time 0 the particle has just entered regime e. We 
also denote by P~o(tlx, ~) the transition probability for going from state 
(x, c~) in regime 0 to regime e in time t, knowing that at time 0 the particle 
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has just entered regime 0 or has just suffered a collision that has inverted 
its velocity. 

Our purpose is to find expressions for these transition probabilities; in 
particular, we are interested in computing Plo( t fL ,  _+t) because 
P10(oelL, _+1) is connected with the flux across the potential barrier 
separating the two wells, as discussed in Section 5.7. 

5.3. Evolut ion Equations for  P1E 

We shall apply the general formalism developped in Ref. 1 to write 
down the evolution equation for Ply- We denote 

{ ;  if z>O 

t/(r) = if r < 0  

t A t ' =  rain(t, t') 

Then the transition probabilities PI~ satisfy the system of integral equations 
[for convenience the equations are enumerated by (5.e) for PI~] 

P 1 1 ( t ) = e - & t +  d~21e & ' P l o ( t - r l a ,  + l ) &  (5.1) 

f0 At2 Pl2(t) = dr ~.2e-&rPll ( t  -- r) & 

+ q(t -- %)e-~2~2 Plo( t _ r21a, +1 ) (5.2) 

f~ 
A ,=(x) 

Plo( t[x ,  e) = dr 2oe-~~ plo( t _ r [ x  + c~r, - ~ )  

+ b ~ . + l q ( t - % ( x ) ) e  ~.o~(x} p 1 3 ( t _ r ~ ( x ) )  

+ Q 1 q(t - r~(x))e-~~ p12( t _ .ca(x)) (5.0) 

f0 A~3 P13(t) = dr ~3e &* P14( t - 'c )d 'c  

+ r/(t - z3)e - J.3~3 Plo(t - r3 I L, - 1  ) (5.3) 

P 1 4 ( t )  - -  dr/~4 ~~ PlO(/-- r lL, --1) d~ (5.4) 

We now perform a Laplace transformation in this system; we denote 
by s the Laplace variable, writing, as previously, 

/{s)  = ~+~ e s ' f ( t )  dt 
Jo 
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and in particular we define /3~,,(s), /3,o(SlX, ~). Using the formulas of 
Appendix B, we finally obtained the Laplace transform of the above system 
of equations: 

/3H(s) = 21 +------s + Pto(Sla, +1) (5.1) 

~2 A 
e (~:+s)~2)/311(s)+e-(;2+')~2/31o(sla, +1) (5.2) 

/31o(StX, e ) =  dx'/31o(slx', - . )  

[ x l} x - -  exp -c f f2o+S)  x q ( ~ ( x ' - x ) )  
V V 

+ 6~,+l{exp[ - (20 + s) G(x)]  }/313(s) 

+ 6~ ,_ l{exp [ - (2o+S)  %(x)]}/31o(slL, - 1 )  (5 .0 )  

/313(s) = 2 - ~  (1 --e  -(~3+ s)~3) P14(s) -~ e -(x3+')~3/313(s I L, - 1 )  (5.3) 

/314(S) ~- ~ / 3 1 3 ( S  [ L,  -- 1 ) (5.4) 

5.4. Solution of the System of Laplace-Transformed Equations 

The solutions of the system of Eqs. ( 5 . e ) / ~  obtained by eliminating 

Pl l ,  /312, /313, /314 among Eqs. (5.e); then (5.0) yields a system of two 
integral equations in x for /31o(SlX, _+ 1), which can be differentiated in x 
and gives a system of two equations of first order, 

~/31o(Slx, + l ) _  2~ , - 1 ) + 2 ~  /3'o(slx, +1) 
~X U V 

(5.5) 
~/31o(S I x ,  - l )  = ,~o PlO( s ix , + 1) -- ~,o + s/31o(S [ x, -- 1) 

~X /2 V 

with boundary conditions at x = a and L 

P,o(Sl L, +1)=  C(s) Plo(slL, -1 )  

/31o(S [ a, -- 1 ) = A (s) + B(s) /31o(S ] a, + 1 ) 
(5.6) 
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with 

A(s) = 
(21 + s)(22 + s) 

(1 - -  e -(22+s)r2) 

B(s) = e -~2+')~2 q- 
2122 

(21 + s)(22 + s) 
(1 - e  -(~2+s)~2) (5.7) 

C(s) = e -(~3+')~3 + 
2324 

(2 3 + S)(2 4 Ai- S) 
(1--e ()'3 + S)'C3) 

The solutions of this system are 

Plo(Slx, +l)=2oEe-e~ + 2oFe r 
(5.8) 

Plo(s I x, - 1 )  = # _ E e  -r176 + # + Fe -r176 ~) 

where 40 = [(220 + s)s] rely. 
The #_+ and E and F are given in Appendix B by formulas (B.11) and 

(B.14). 
The solutions are then given by (5.8), and the other functions/5~(s), 

e = 1, 2, 3, 4, are given by formulas (B.5) and (B.6) of Appendix B for fi~2 
and /513, namely 

/512(s) = A(s) + B(s) /51o(sra, + 1) 
(5.9) 

/513(s) = C(s) Plo(st L, - 1 )  

and by Eqs. (5.1) and (5.4) themselves for /5al and /514. As a result, the 
solution of the system (5.e) is determined analytically by the Laplace trans- 
forms of the transitions probabilities. 

5.5. Transition Rates Plo(t[L, +1)  at Large Times 

The asymptotic value of Plo(t]L, _+1) is given by the limiting behavior 
for s--* 0 + of/51o(sIL, +1). We refer to Appendix C to obtain 

Pao(S I L, - 1  ) = U(s)/D(s) 
(5.10) 

Plo(SlZ, +1)  = N(s) C(s)/D(s) 
where N(s) and D(s) are defined by formula (C.1) and C(s) by formula 
(B.7). 

After some calculations given in Appendix C it is found that for 
S ---~ 0 + 

SP~o(sl L, - 1  ) = ~ + fl_ s + O(s 2) 

SPlo(slL, + l ) = a + ~ + s + O ( s  2) 



334 Borgis, Gaveau, and Moreau 

with, by formulas  (C.10)-(C.13),  

a E ~ = _ _ 2 { 1 ( 1 _ e - ~ 2 ~ 2 )  2 L - a + ( l _ e  <~2) (2 i -1+2f l  ) 
c v 

+ (1 -- e 23"v3)(231 2i- 241)] --1 

c 

/~+ =/~_ -~(1  - e  ~3T3)(231 +221) 

(5.11) 

In  part icular ,  the asympto t i c  value of Plo(t l  L, +1 )  is 

P l o ( ~  I L, + 1 )  = ct 

As an example  we have, in the case of a symmetr ic  potent ia l  21 = 24, 
22 = 23, % = % = 2 a/v 2 and a = b; then 

1[ 21 L - a  
~=2 1+T~+21 v 

(1 - e 222a/v2)--13 -1 

5.6. The Particular Case hi = k4 = 0 

This par t icular  case means  tha t  once the particle is in the regime e = 1 
or e = 4, it is t r apped  there forever. I t  is also the limiting case for very large 
relaxat ion t ime (see Section 5.7). In  tha t  case we can obta in  the following 
simplified results: 

22 
A ( s ) - - -  ( 1 - P 2 ) ,  B(s)=P2, C(s)=P3 

s(22 + s) 

sPlo(slL, -1 )  = 22(22 + s) -1(1  - pz)sl/2(22o)(22o + s) u2 (5.12) 
D(s) 

where, as usual, 

pi=e -(&+s), i = 2 ,  3 

20 is the collision frequency in regime eo; D(s),  given in Appendix  C, 
depends on P2, P3, and 2o. 

We can now per form two kinds of limits: 

(i) We fix 2o and expand  in powers  of a = (S/2o) u2 to obta in  

1 - - P 2  sfilo(slL, - 1 )  = + O(a) (5.13) 
1 - P2P3 + (1 - p2)(1 - P3) 2o(L - -  a)/v 
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In this expansion, we are interested in the case 21 = 24 = 0 and s/2 o =- a 
small, which means that we look for the asymptotic behavior of 
P l o ( s l L , - 1 )  for a scale of time large with respect to the scale of the 
relaxation time on the top of the barrier and very small with respect to the 
activation time when the particle is in the bottom of the wells (which is 
really infinite). 

(ii) We first let 2o tend to zero in (5.12), which leads to 

22(22 + s)-a(1 - P2) (5.14) 
lira s/51o(S] L, - 1 )  = eE(L_a)/~l, + P3P2 e- -[ (L  a)/v3s ),0~0 

When s ~ 0 this expression tends to 

1 - P 2  
(5.15) 

1 --  P2P3 + 2 p 3 ( L  - a)/v 

This is the asymptotic value for t ~ ~ of the conditional probability if 
there is no collision when the system is on the top of the barrier. 

It is clear by (5.12) and (4.14) that it differs from the asymptotic value 
of case (i). 

5.7. Application to Reaction Dynamics 

We apply these results to study the dynamics of systems similar to 
models of Hynes et al. (6' 12) and Chandler et al. (9' 1o/ We consider that the 
particle is in state A if it is in regime 1 or 2 and in state B if it is regime 3 or 
4. Let NA(t) and NB(t) be the numbers of particles in states A and B at 
time t and 6NA(t) and 6NB(t) their fluctuations. The correlation function is 

C(t) = ( 6NA(O) f iNs( t ) )  (5.16) 

where ( . . . )  is an equilibrium average over initial conditions. The reactive 
flux from B to A is 

1 dC 
k(t) - N dt (5.17) 

and so in our case, following Chandler, (9) we obviously have from (5.16) 
and (5.17) 

~:(t) = ( . ( x ( O ) -  L) v(t) 6(x(t)-a)) (5.18) 

with ~/the Heaviside function, 6 the Dirac function, and x(0) and v(0) the 
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initial position and velocity of the particle, respectively. In our model the 
equilibrium probability is 

1 (_ U(x)  
P(x, + ) = 2-0 exp kT J 

where 
Q=~L+b 

O L  

velocities + v with probability ~)  

/ U(x)'] 
dx exp [ - 

k k T J  

and U is the internal potential of the system. Then k(t) takes the form 

k(t) = kTsT[PAo(tIL, + 1) -- PAo(tIL, - 1 ) ]  (5.19) 

where 

and 

eAo(tlL, +l)=Plo(tlL, •  P2o(tlL, • (5.20) 

k v s T = 5 ~ e x p  ~ - - ~  (5.21) 

Here kTST is the reactive flux resulting from the transition state theory, (9) 
which neglects all possible returns from A to B. 

Now, it is clear that k(t) ~ 0 if t ~ +Go, since the asymptotic values of 
the conditional probabilities do not depend on the initial states; this 
property can also be verified in our model by direct calculations using for- 
mulas previously derived. 

Now, we want to look at k(t)/kTsv for a scale of time to such that 

tmol ~ to ~ tre~ (5.22) 

where trod is the molecular time of order 2o 1 (or 221 or 231, which are 
about of the same order and are related to the free mean path of our 
reacting system in the surrounding medium) and tre 1 is the chemical 
relaxation time, which is of order 21 ~ or 241 and is much greater than trnol ; 
this means that we consider the reactive flux at a scale of time much larger 
than the time of absorption in the wells, but much less than the reac- 
tivation time tro~. NOW, at that scale of time, we obtain 

P2o(tolL, • 0 
and so we have 

k(to) 
lim [P,o(tolL, +l)-Plo(to]t ,  -1)]  (5.23) 

kwsx tmol "~ t o -~ tre 1 



Collision Processes with Memory 337 

Let us pause to note that we cannot take simply the limit to ~ + oe in 
the preceding formula, because this would mean that we would take 

lim s [/3~o(S I L, + 1 ) -/31o(S I L, - 1 )] 
s ~ 0  

but this is zero because/31o(slL, + 1 ) =  C(s)Plo(sJL,  - 1 ) ,  where C ( s ) ~  1 
if s ~ 0 [which confirms what we said, namely k ( t ) ~  0 if t ~ +oo] .  

Because we want to consider the behavior of k(to)/kTs-r in (5.23) for 
to ~ t ~ ,  we can take 2~ = 2 4 = 0 and apply the results of Section 5.6. But 
since we want tmo I ~ t, this means that the parameter  a =  (S/2o) ~/2 is small 
and we can apply the first expansion (5.14). Let us take 22 = 23 = 2 o -  c~, a 
symmetric potential, so that % = r3 = ~ and a = b; by (5.14) we obtain 

1 - e - ~  

s[~to(slL,  - 1  ) = 1 - e - 2 ~  + ~ [ ( L  - a) /v] (1  - e - ~ ) 2  + O(~r) 

= I I + e - ~ + e ( ~ - ~ ) ( 1 - e  " ~ ) l - l + O ( a )  

But, by Section 5.4, we know that if 24 = 0, 

C(s)  = e (~.3 + s)~ 

Thus 

C(s)  ~ e - ~  + O ( a )  

and 

SPlo(sl  L, + 1 ) = C(s)  SPlo(sl  L, - 1) 

so that for t m o ~ t ~ t r ~  ~, we obtain from (5.23) and the preceding 
asymptotics 

k( to)  1 - e  ~ 
(5.24) 

kTs-r 1 + e - ~ + e [ ( L - a ) / v ] ( 1  - e  - ~ )  

Here r is twice the time needed for a return over the potential well, so that 
it is 

~oc2a/vz = 2a(v 2 + 2 E / m )  L/2 

where E is the barrier potential [we observe that the sign in (5.24) is 
negative due to the fact that we have computed the reactive flux coming 
from the right of the barrier potential].  
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~/K*st I 
0.40 

0.20 

I I I I 

2.0 4.0 6.0 8.0 G 

Fig. 4. Chemical rate constant for a symmetric double-well potential as a function of the 
dimensionless collision frequency G = e ( L  - a ) / v  [formula (5.24), with v v / ( L  --  a )  = 1 ]. 

K/Ktst 
0.40 

0.20 

I I I I I 
2.0 4.0 6.0 8.0 TIME 

Fig. 5. Time-dependent rate constant  k ( t )  for a symmetric double-well potential: ( - - )  
G = ~ ( L - - a ) / v =  1, S = v v / ( L - a ) =  1; ( - - )  G=0.5 ,  S =  1. 
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Now, we can take in (5.24) the limits for c~ ~ +oo (high viscosity) or 
~ 0 (small viscosity) to obtain 

I k ( t o ) / k T s T I  ~ v / ~ ( L  - -  a )  ~ ~ + oo 

]k(  t o ) / k T s T ]  ~ �89 ~ --+ 0 

in agreement with the standard results of the Kramers theory. (4'9'12'13) 
Numerical computations and graphs are given in Figs. 4 and 5. 

6. C O N C L U S I O N  

We have applied the general formalism developed in Ref. 2 and in the 
previous paper (1) to three models: two models with finite state space, and a 
model of diffusion in a two-well potential with continuous state space. In 
the first two models we obtained an approach to equilibrium either by 
decreasing exponentials or by decreasing oscillating exponentials, 
depending on the values of the parameters; this last behavior is due to the 
combination of a deterministic and a stochastic dynamics with different 
time scales. In the more elaborate models, we have found that our results 
are in agreement with numerical simulations and experimental data for the 
reactive flux at an intermediate scale of time. Moreover, our approach is 
entirely analytical and rigorous and the new phenomena that we have 
found by our analysis confirm numerical simulations done by previous 
authors. 

We note also that we have not used the full power of the general 
processes that we defined in the beginning of the second reaction and in 
Ref. 1, since all stochastic times are exponential. In particular, the non- 
Markovian character of the evolution is very mild and occurs only because 
of the deterministic times introduced to distinguish several phases of the 
evolution (in the potential wells, on the top of the barrier). Moreover, this 
cannot be used for a very dense medium. In further work in progress, we 
will treat more complicated processes with more realistic approximations of 
a dense environment (in particular, of the cage effect), by introducing con- 
venient nonexponential random times to obtain memory effects. 

The advantage of this kind of model is that they are simple enough to 
be solved exactly while preserving the main features of the dynamics, 
whereas the Fokker-Planck approach leads a partial differential equation 
which in general is not exactly solvable and does not always give a suitable 
approximation of the evolution (see, for example, another model of 
chemical reaction in Ref. 15). 
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A P P E N D I X  A 

In this appendix, we give detailed computations for Section 4. The 
matrix A(s) defined by (2.8), (2.9), and (4.1) is 

_ 1 4 2 ( ? ~ + s ) - ~ ( p 2 - 1 )  o 

A ( S )  = 41(? 1 + s )  -j 1 - P 3  

00 -P2 1 
0 ?3(43 + s) ~(P3-1) 

with 
p i ~ C  (2i+ s)r 

According to the general theory, the matrix P(s) is 

P(s)  = 0(s) A - ' ( s )  

where 0(s), defined by (2.10), is 

(21 "~S)  - 1  0 0 

0(s) = 0 (,12 + s) ~ o 
0 0 (?3 + s) -1 
0 0 0 

0) 
0 

0 
(24 + s) i 

The asymptotic value of P(t) is 

P~0(oo) = P~(oo) oc t~q~ 

where 

t l = 2 f  1 , t2 = (1 - - 0 - 2 ) ? f  1 , t3 = (1  - -  0 - 3 ) 7 3 1  , t 4 = 4 4 1  

with 

0-i = e ~ ,  i = 2, 3 

(q~) is the right null-vector of A(0): 

ql  = ~ - ~ q2 = 0 2 ,  q3 = 0-3, q4 = 0-2( 1 - 0-3) 

which leads to formula (4.2) for P(oo). 
The asymptotic behavior of P ( t ) -  P(oo) is determined by the poles of 

P(s), which are the nonzero roots of det A(s)= 0. It is found that 

4 
det A(s) = sD(s) 1-[ (2i + s) 1 

i = 1  
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with 

D(s)  = s(s + 21 + 22)(s "]- 23 -~- 2 4 ) ( 1  - -  P2P3) 

-}- ,Jq 22P2(1  - -  p3) (S  q- 21 -}- 22) + 2324P3(1  - -  R2)(S --{- 23 -}- 24) 

The zeros of D(s)  cannot  be found analytically, since Pi = 0-ie-S~'. However ,  
if sr 4~ 1, pi may be replaced by the constant  0-~ and D(s)  becomes a 
p o l y n o m i a l / ) ( s )  of order  three in s. It can be shown that  it has two com- 
plex roots  for convenient  values of the 2~. 

ProoL Writing 

21 + 2 2 = a ( 1  q - 0 )  

23 q- 24 = a ( 1  - 0 )  

21220-2(1 - -  0"3) = ~2a2(1  + 0)2 /4  

2324G3(  1 - -  02) = ~3 a2( 1 - -  0)2 /4  

It is easily seen that  10l < 1 and ~2 q- ~3 < ]. 

As a part icular  case, take ~2 = ~3 = (X < 1/2. Then  the e q u a t i o n / ) ( s )  = 0 
implies, for u = s/a, 

F(u) - (u + l ) ( u  2 q- u + ~/2) - 0 2 ( u ( 1  - c~/2) + a/2) = 0 

o r  

y ( u )  ~ b/2 -[- /X q- a/2 = 0 2 u(1 - ~/2) + a/2 = z(u)  
u + l  

For  u < - 1 ,  this equat ion admits one real root  and only one, since the left- 
hand side decreases from + oe to e/2, and the r ight-hand side increases 
from 0 2 ( 1 - ~ / 2 )  to + oo when u increases from - o o  to - 1 .  

For  u >  - 1 ,  the r ight-hand side z(u) vanishes for u =  
-(c~/2)(1 - cr ~--- b/0 and 

Thus 

z(u)-< dz 1 - ~ / 2  Iu  ( 1 - ; )  + ; ]  
"~ du (Uo)" (u - Uo) = 0 2 1 - -  O~ 

F ( u )  - y ( u )  - z ( u )  

>~u2+u (1  - 0 2  (1 - - g / 2 ) 2 ~  0~ // 02 1 -- ~/2"~ .~, , 
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The discriminant A of G(u) is found to be 

d=(02(1--~/2)2 1 - 3~/2) 2 ~3/2 

1 -c~ ] -- ~--~J (1 - ~ / 2 )  2 

which is negative if :r > 0 and 

02 _~ (1 - ~)(1 - 3a/2) 
(1_~/2)3  (<1  if ~ <  1/2) 

For these values of 0, G(u) is positive for any u, and 

F(u) >>. G(u) > 0 for u > -1  

Then F(u)= 0 has only one real root and two complex roots. 

A P P E N D I X  B 

This appendix gives the details of the calculations of Section 5.3. We 
denote by Y the operator of Laplace transform, namely 

(SFf)(s) = f ( s )  

We need the following preliminary calculations: 

~ (f~ f (r)  g ( t -  r) dr) = ~ f  . S g  

s 2e-~TP(t--r)d~= (1-e- (~+' )s )s f (P)  (B.1) 

2e(~(t-  s) P ( t -  s)) = e-S~e(P) 

We have to compute 

s 2o e x0~ plo( t _ ~lx + ~w, -cr & 

= dx~ ~ 2o e-~~ Plo(t-~lx~,  - ~ )  6 (x l - - x - -~w)  cl~ 

and using (1), we obtain: 

= dXl 5f'(rl(r) rl(%(x) - r) 2o e-~~ 6(x, -- x -- avr)) 

x Y(Plo('C I Xl, --~)) 
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But we have 

so that 

5('(q(~) tl(z~(x ) - - z )  2o e-'~~ 6(x 1 - x -  ~vz ) )(s) 

2Oe (m+s)(~-~)/~ tl(x 1 x)  if c~ +1 
/) 

)~Oe(~O+,)(Xl x)/v t l ( x _ x l )  if c t=- -1  
V 

( f ]  ^ rdx) ) ~4' 2o e ~o~Plo( t _ r [ x + ~ v r ,  - ~ ) &  (s) 

= dx'Plo(slx',-oO2~176 (B.2) 
/3 

Using these formulas, it is easy to derive the Laplace-transformed 

system (5.0)-(5.4) from (5.0)-(5.4). We want to solve this system. 
This system can be written as 

P12(s) = A(s)  + B(s) Plo(sla, +1) 

e13(s) = C(s) P~o(s I L, - 1) 

with 

(B.5) 

(B.6) 

22 A(s )=  ( 1 - e  (;.2 + s)~2) 
()~i + S)(J[2 + S) 

2122 B(s) = e-(~:+ s)~: .+ 
(~1 AT- S)(,~ 2 -~- S) 

,~324 C ( s ) = e  (~3 + ~3 -I- 
(2 3 + S)(/~ 4 -~- S) 

We now use Eqs. (B.5) and (B.6) in (5.0), to obtain 

(1--e ()'2 + S)Z2) 

(1 - -e  I;.3 + s)~3) 

(B.7) 

Plo(SlX, +1)=yfo dx' Plo(slx', --1) 2~ (~0+s)(x' x)/~ 

+ e (~.o+s)~+(x~ C(s) Plo(s lL ,  --1) 
^ 

+ e-(~~ ~-(X~[A(s ) + B(s) Plo(s lx ,  +1 )] 

(B.8) 

822/45/1-2-23 
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Recall that ~ + ( x ) =  ( L - x ) / v ,  r ( x ) =  ( x - a ) / v  and differentiate with 
respect to x; finally we obtain the folowing first-order differential system: 

a/~o(StX, +1)  '~~ P ~ o ( s l x , - 1 ) + 2 ~  +1)  
t?x v v 

(B.9) 

aP~o(S I x, - 1 )  _- 2o P~o(S I x, + 1) - ;oo +.___~s P~o(S I x, - 1 )  
~X /) V 

with the two limit condit ions at a and L, which can be derived from (B.8), 

/~Io(S I L, + 1) = C(s) P~o(S I L, - 1) 

Plo(S I a, - 1) = A(s)  + B(s) P~o(S I a, + 1) 
(B.10) 

The eigenvalues of the linear system (B.9) we 

+_ 4o = + [(220 + s)s/v 2 ] 1/2 

and the corresponding eigenvectors are 

V _ -  - 2 o + S + [ ( 2 2 o + S ) S ]  1/2 

V +  ~- m_ 
#+ 2 o + S -  [ (22o+S)S]  ~/2 

Then the solutions of system (B.9) are found to be 

/31o(S I x, +1 ) = 2oEe -Cox + 2oFe -Co(C-x) 

/ r i o ( S i x , - 1 ) = #  Ee ~~  ~o(L xl 

(B.11) 

(B.12) 

with 

E =  A(s)  er176 o -  C(s)#  + ] 

x { [l~_ -- B(s) 20][20 -- C(s)l~+ ] e (L-a)r176 

- [~+ - B ( s ) & ] E & -  C(s)# ] e-~O~-,o}-~ 
(B.13) 

F =  -- A(s)[2o - C(s )#_  ] 

x { [ # _  - B(s)2o]  [20 -- C(s)ll + ] e (L a)r 

_ [ # + _ B ( s ) 2 o ] [ 2 o _ C ( s ) l ~  ]e-eo(L a)}-~ 

The solution of our  system is determined first by/~..Eq. (B.12), then by 

Eqs. (B.5) and (B.6), and finally by Eqs. ~ and (5.4). 
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APPENDIX C 

We obtain by Eqs. (B.12) and (B.13) of Appendix B and Sections (5.3) 
and (5,4) 

P , o ( s ] L , - 1 ) = A ( s ) 2 0 (  # - # . )  

x { [#_ - B(s)20] [20 - C(s)#+ ] e ~L- ~o  

__ [ # +  __ B ( S ) . ] O ] [ 2 0 _ _  C ( s ) # _  1 e-(L-a)~o} 1 ( C A )  

where N(s) and D(s) are the numerator and denominator of Eq, (C.1) and 
also 

/~m(sl L, +1) =/~m(sl L, - 1 )  C(s) (C.2) 

We want to find the asymptotic behavior for s--* 0 + of these quan- 
tities. 

C1. Prel iminary Computat ions 

I t  is found that 

1 
A(s)=T~ ( 1 - e  ;,2~2)+s[2~ e z2~2r2_2Fl(2~-~+22~)(l_ e ~2~2)]+... 

(C.3) 

B(S) = 1 - -  ~2 S - - /~2  $2 -{- " ' "  (C.4) 

with 

O~ 2 = (1 -- e-Z2~2)(Ai -~ + 3,2 ~) 

fi2 = 1-"~1 2 -]- "J~2 2 - -  ( '~122) - -1  ] ( 1  - -  e -&~2' + e -  22~2"c2(~./1 q- 2 2 1  ) 

C(S) = 1 - -  O~4S - -  f14 $2 "~ " ' "  

with 

~4 = (1 - -  e 23r3)(.~41 -}- ~ 3 1 )  

f14 = [ 2 3  2 + ,~4 2 - -  (~,3-~,4)- '  ] (1 - -  e - '~3r3) + e-23~3"c3(,~,3 ' + j ,~ - l )  

(c.5) 

(C.6) 

(c.7) 

C2. Expansion of I~lo(slL, - 1  ) 

We have by (C.1) up to (C.7) 

sPlo(slL, - 1 )  = 
a + b s +  ...  

c+ds§ . . .  
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and so we obtain 

with 

and 

a 21(1 - e  -;~2~2) 

c 2(L - -  a)/I) q- o~ 2 .-~ o~ 4 

d = ( ~ 2 + c % ) I ( 4 " ~ ~  1 - - L - a  (L-a)2 I v  q ~2 2o 

L - a  1 ) + ( 2 2 0 ) - l L - - a  -1- 0~20~4 20 V /.) +G+/~4 

b d (420) 1 _ ~2 + e )-2r2"c 2 d 

a c 1 -- e -.2~2 2(L - a)/v + O~ 2 "q- O~ 4 

(c.8) 

(C.9) 

(c.~o) 

C3. Expansion of Go(slL, +1 ) 

We use (C2) and (C.6), 

S~o(slL, +l)=S~,o(slL, -~) C(s) 

: a - ~ - s [ ( ! - - d ~ a - - ~  c]  c (C.11) 

In  particular, we can compute  

a 
S~I)10(S [ L ,  -~- 1 ) - -  s ]  :3 lo ( s [  L ,  - 1 ) = - s o (  4 - -~- O ( s  2) 

c 

and so 

a 
lim [/DlO(SI L, q-l) - /~lo(s l  L, - -1) ]  = --c~4 - 
s ~ 0  C 

(c.12) 

where ~4 is given by (C.7) and a/c by (C.9). 
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